Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Context.Type Ia supernovae (SNe Ia) are a key probe in modern cosmology, as they can be used to measure luminosity distances at gigaparsec scales. Models of their light curves are used to project heterogeneous observed data onto a common basis for analysis. Aims.The SALT model currently used for SN Ia cosmology describes SNe as having two sources of variability, accounted for by a color parameterc, and a “stretch” parameterx1. We extend the model to include an additional parameter we labelx2, to investigate the cosmological impact of currently unaddressed light-curve variability. Methods.We constructed a new SALT model, that we dub “SALT3+”. This model was trained by an improved version of theSALTshakercode, using training data combining a selection of the second data release of cosmological SNe Ia from the Zwicky Transient Facility and the existing SALT3 training compilation. Results.We find additional, coherent variability in supernova light curves beyond SALT3. Most of this variation can be described as phase-dependent variation ing − randr − icolor curves, correlated with a boost in the height of the secondary maximum ini-band. These behaviors correlate with spectral differences, particularly in line velocity. We find that fits with the existing SALT3 model tend to address this excess variation with the color parameter, leading to less informative measurements of supernova color. We find that neglecting the new parameter in light-curve fits leads to a trend in Hubble residuals withx2of 0.039 ± 0.005 mag, representing a potential systematic uncertainty. However, we find no evidence of a bias in current cosmological measurements. Conclusions.We conclude that extended SN Ia light-curve models promise mild improvement in the accuracy of color measurements, and corresponding cosmological precision. However, models with more parameters are unlikely to substantially affect current cosmological results.more » « lessFree, publicly-accessible full text available May 1, 2026
- 
            SN 2021adxl is a slowly evolving, luminous, Type IIn supernova with asymmetric emission line profiles, similar to the well-studied SN 2010jl. We present extensive optical, near-ultraviolet, and near-infrared photometry and spectroscopy covering ∼1.5 years post discovery. SN 2021adxl occurred in an unusual environment, atop a vigorously star-forming region that is offset from its host galaxy core. The appearance of Lyαand O II, as well as the compact core, would classify the host of SN 2021adxl as a “Blueberry” galaxy, analogous to higher redshift, low-metallicity, star-forming dwarf “Green Pea” galaxies. Using several abundance indicators, we find a metallicity of the explosion environment of only ∼0.1 Z⊙, the lowest reported metallicity for a Type IIn SN environment. SN 2021adxl reaches a peak magnitude ofMr ≈ −20.2 mag and since discovery, SN 2021adxl has faded by only ∼4 magnitudes in therband with a cumulative radiated energy of ∼1.5 × 1050erg over 18 months. SN 2021adxl shows strong signs of interaction with a complex circumstellar medium, seen by the detection of X-rays, revealed by the detection of coronal emission lines, and through multi-component hydrogen and helium profiles. In order to further understand this interaction, we model the Hαprofile using a Monte Carlo electron scattering code. The blueshifted high-velocity component is consistent with emission from a radially thin spherical shell resulting in the broad emission components due to electron scattering. Using the velocity evolution of this emitting shell, we find that the SN ejecta collide with circumstellar material of at least ∼5 M⊙assuming a steady-state mass-loss rate of ∼4 − 6 × 10−3M⊙yr−1for the first ∼200 days of evolution. SN 2021adxl was last observed to be slowly declining at ∼0.01 mag d−1, and if this trend continues, SN 2021adxl will remain observable after its current solar conjunction. Continuing the observations of SN 2021adxl may reveal signatures of dust formation or an infrared excess, similar to that seen for SN 2010jl.more » « less
- 
            null (Ed.)In this paper, we discuss the outcomes of the follow-up campaign of SN 2018ijp, discovered as part of the Zwicky Transient Facility survey for optical transients. Its first spectrum shows similarities to broad-lined Type Ic supernovae around maximum light, whereas later spectra display strong signatures of interaction between rapidly expanding ejecta and a dense H-rich circumstellar medium, coinciding with a second peak in the photometric evolution of the transient. This evolution, along with the results of modeling of the first light-curve peak, suggests a scenario where a stripped star exploded within a dense circumstellar medium. The two main phases in the evolution of the transient could be interpreted as a first phase dominated by radioactive decays, and a later interaction-dominated phase where the ejecta collide with a pre-existing shell. We therefore discuss SN 2018jp within the context of a massive star depleted of its outer layers exploding within a dense H-rich circumstellar medium.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
